Bayesian one-step IPD network meta-analysis of time-to-event data using Royston-Parmar models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Blackwell Country of Publication: England NLM ID: 101543738 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-2887 (Electronic) Linking ISSN: 17592879 NLM ISO Abbreviation: Res Synth Methods Subsets: MEDLINE
    • Publication Information:
      Publication: : Chichester : Wiley Blackwell
      Original Publication: Malden, MA : John Wiley & Sons, 2010-
    • Subject Terms:
    • Abstract:
      Network meta-analysis (NMA) combines direct and indirect evidence from trials to calculate and rank treatment estimates. While modelling approaches for continuous and binary outcomes are relatively well developed, less work has been done with time-to-event outcomes. Such outcomes are usually analysed using Cox proportional hazard (PH) models. However, in oncology with longer follow-up time, and time-dependent effects of targeted treatments, this may no longer be appropriate. Network meta-analysis conducted in the Bayesian setting has been increasing in popularity. However, fitting the Cox model is computationally intensive, making it unsuitable for many datasets. Royston-Parmar models are a flexible alternative that can accommodate time-dependent effects. Motivated by individual participant data (IPD) from 37 cervical cancer trials (5922 women) comparing surgery, radiotherapy, and chemotherapy, this paper develops an IPD Royston-Parmar Bayesian NMA model for overall survival. We give WinBUGS code for the model. We show how including a treatment-ln(time) interaction can be used to conduct a global test for PH, illustrate how to test for consistency of direct and indirect evidence, and assess within-design heterogeneity. Our approach provides a computationally practical, flexible Bayesian approach to NMA of IPD survival data, which readily extends to include additional complexities, such as non-PH, increasingly found in oncology trials.
      (© 2017 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.)
    • References:
      Stat Med. 2015 Sep 20;34(21):2881-98. (PMID: 26099573)
      BMJ Open. 2013 Jul 21;3(7):. (PMID: 23878173)
      BMC Med Res Methodol. 2016 Feb 11;16:16. (PMID: 26869168)
      Stat Med. 2011 Aug 30;30(19):2409-21. (PMID: 21611958)
      J Clin Epidemiol. 1997 Jun;50(6):683-91. (PMID: 9250266)
      Stat Methods Med Res. 2018 Feb;27(2):428-450. (PMID: 26988929)
      Eval Health Prof. 2002 Mar;25(1):76-97. (PMID: 11868447)
      BMC Med Res Methodol. 2012 Oct 08;12:152. (PMID: 23043545)
      Stat Med. 2002 Aug 15;21(15):2175-97. (PMID: 12210632)
      Res Synth Methods. 2012 Jun;3(2):177-90. (PMID: 26062089)
      Stat Med. 2013 Mar 15;32(6):914-30. (PMID: 22987606)
      Res Synth Methods. 2017 Dec;8(4):451-464. (PMID: 28742955)
      BMC Med Res Methodol. 2012 Mar 23;12:34. (PMID: 22443286)
      BMJ. 2003 Sep 6;327(7414):557-60. (PMID: 12958120)
      Res Synth Methods. 2010 Jul;1(3-4):258-71. (PMID: 26061470)
      Eur J Cancer. 2003 Nov;39(17):2470-86. (PMID: 14602133)
      Pharmacoeconomics. 2006;24(1):1-19. (PMID: 16445299)
      Stat Med. 2014 Sep 28;33(22):3844-58. (PMID: 24789760)
      J Clin Oncol. 2008 Dec 10;26(35):5802-12. (PMID: 19001332)
      BMC Med Res Methodol. 2011 May 06;11:61. (PMID: 21548941)
      Stat Med. 2002 Aug 30;21(16):2313-24. (PMID: 12210616)
      Int J Epidemiol. 2012 Jun;41(3):818-27. (PMID: 22461129)
      Stat Med. 1996 Dec 30;15(24):2733-49. (PMID: 8981683)
      BMJ. 2017 Mar 3;356:j573. (PMID: 28258124)
      Clin Trials. 2005;2(3):209-17. (PMID: 16279144)
      J Clin Oncol. 2016 May 20;34(15):1813-9. (PMID: 26884584)
      J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):137-159. (PMID: 19381330)
      BMC Med Res Methodol. 2014 Sep 10;14:105. (PMID: 25209121)
      Stat Med. 2013 Jul 30;32(17):2911-34. (PMID: 23386217)
      Stat Med. 2010 Mar 30;29(7-8):932-44. (PMID: 20213715)
    • Grant Information:
      MC_UU_12023/21 United Kingdom MRC_ Medical Research Council
    • Contributed Indexing:
      Keywords: IPD; Royston-Parmar; network meta-analysis; time-to-event data
    • Publication Date:
      Date Created: 20170726 Date Completed: 20180806 Latest Revision: 20210109
    • Publication Date:
    • Accession Number:
    • Accession Number:
    • Accession Number: